Algorithm convergence
ثبت نشده
چکیده
THEOREM 1. Given matrix H and vector d, the algorithm converges. The number of iteration depends on parameters and . PROOF. The convergence of the algorithm depends on Equation (6). Equation (6) converges if and only if 1 ) ( H , where ) ( H is the spectral radius of matrix H . Since j and for each row i of matrix H, either ) ( 1 ) , ( i Ne j j i h 0 ) , ( i h or ) ( 0 ) , ( i Ne j j i h ,
منابع مشابه
Modified frame algorithm and its convergence acceleration by Chebyshev method
The aim of this paper is to improve the convergence rate of frame algorithm based on Richardson iteration and Chebyshev methods. Based on Richardson iteration method, we first square the existing convergence rate of frame algorithm which in turn the number of iterations would be bisected and increased speed of convergence is achieved. Afterward, by using Chebyshev polynomials, we improve this s...
متن کاملW-convergence of the proximal point algorithm in complete CAT(0) metric spaces
In this paper, we generalize the proximal point algorithm to complete CAT(0) spaces and show that the sequence generated by the proximal point algorithm $w$-converges to a zero of the maximal monotone operator. Also, we prove that if $f: Xrightarrow ]-infty, +infty]$ is a proper, convex and lower semicontinuous function on the complete CAT(0) space $X$, then the proximal...
متن کاملOn the Convergence Analysis of Gravitational Search Algorithm
Gravitational search algorithm (GSA) is one of the newest swarm based optimization algorithms, which has been inspired by the Newtonian laws of gravity and motion. GSA has empirically shown to be an efficient and robust stochastic search algorithm. Since introducing GSA a convergence analysis of this algorithm has not yet been developed. This paper introduces the first attempt to a formal conve...
متن کاملOn the Convergence Analysis of Gravitational Search Algorithm
Gravitational search algorithm (GSA) is one of the newest swarm based optimization algorithms, which has been inspired by the Newtonian laws of gravity and motion. GSA has empirically shown to be an efficient and robust stochastic search algorithm. Since introducing GSA a convergence analysis of this algorithm has not yet been developed. This paper introduces the first attempt to a formal conve...
متن کاملAN IMPROVED INTELLIGENT ALGORITHM BASED ON THE GROUP SEARCH ALGORITHM AND THE ARTIFICIAL FISH SWARM ALGORITHM
This article introduces two swarm intelligent algorithms, a group search optimizer (GSO) and an artificial fish swarm algorithm (AFSA). A single intelligent algorithm always has both merits in its specific formulation and deficiencies due to its inherent limitations. Therefore, we propose a mixture of these algorithms to create a new hybrid optimization algorithm known as the group search-artif...
متن کاملStrong convergence of modified iterative algorithm for family of asymptotically nonexpansive mappings
In this paper we introduce new modified implicit and explicit algorithms and prove strong convergence of the two algorithms to a common fixed point of a family of uniformly asymptotically regular asymptotically nonexpansive mappings in a real reflexive Banach space with a uniformly G$hat{a}$teaux differentiable norm. Our result is applicable in $L_{p}(ell_{p})$ spaces, $1 < p
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012